Prop Conversion Formula
This formula is good for when you have a good known prop for a particular application, but want to replace it with one with a different number of blades, or a different diameter and pitch.

The more complete formula, which takes the number of prop blades into account is $\mathrm{D} x$ $\mathrm{D} \times \mathrm{D} \times \mathrm{P} \times$ Square root ($\mathrm{N}-1$), where $\mathrm{N}=$ the number of prop blades. For a 2 bladed prop, the square root of (2-1) is the square root of 1 which is 1 , so the term just drops out of the equation.

For a 3-bladed prop, the correction factor is the square root of (3-1) or the square root of 2 , which is 1.414 .

For a 4 bladed prop, the correction factor is the square root of 3 , which is equal to 1.732

So if you have a 3-bladed 9×7 prop, then the load factor is $9 \times 9 \times 9 \times 7 \times 1.414$, which is 7,216, and this would be roughly equivalent to a 2-bladed 10x7 prop, which has a load factor of 7,000.

If you had a 4-bladed 12×7 prop, then the load factor would be $12 \times 12 \times 12 \times 7 \times$ 1.732 or 20,950 This would be roughly equivalent to a 2 -bladed 14×8 prop, which has a load factor of 21,952.

In the end, if the load factor of 2 props is the same, you will get similar RPMs from the two props, and similar performance.

So there you go, hope that helps!

